SparkDBFSDatasource
class great_expectations.datasource.fluent.SparkDBFSDatasource(*, type: Literal['spark_dbfs'] = 'spark_dbfs', name: str, id: Optional[uuid.UUID] = None, assets: List[Union[great_expectations.datasource.fluent.data_asset.path.spark.csv_asset.CSVAsset, great_expectations.datasource.fluent.data_asset.path.spark.csv_asset.DirectoryCSVAsset, great_expectations.datasource.fluent.data_asset.path.spark.parquet_asset.ParquetAsset, great_expectations.datasource.fluent.data_asset.path.spark.parquet_asset.DirectoryParquetAsset, great_expectations.datasource.fluent.data_asset.path.spark.orc_asset.ORCAsset, great_expectations.datasource.fluent.data_asset.path.spark.orc_asset.DirectoryORCAsset, great_expectations.datasource.fluent.data_asset.path.spark.json_asset.JSONAsset, great_expectations.datasource.fluent.data_asset.path.spark.json_asset.DirectoryJSONAsset, great_expectations.datasource.fluent.data_asset.path.spark.text_asset.TextAsset, great_expectations.datasource.fluent.data_asset.path.spark.text_asset.DirectoryTextAsset, great_expectations.datasource.fluent.data_asset.path.spark.delta_asset.DeltaAsset, great_expectations.datasource.fluent.data_asset.path.spark.delta_asset.DirectoryDeltaAsset]] = [], spark_config: Optional[Dict[pydantic.v1.types.StrictStr, Union[pydantic.v1.types.StrictStr, pydantic.v1.types.StrictInt, pydantic.v1.types.StrictFloat, pydantic.v1.types.StrictBool]]] = None, force_reuse_spark_context: bool = True, persist: bool = True, base_directory: pathlib.Path, data_context_root_directory: Optional[pathlib.Path] = None)#
Spark based Datasource for DataBricks File System (DBFS) based data assets.
add_csv_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7f670c41c2c0> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7f670c41c380> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7f670c41c4d0> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7f670c41c680> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7f670c41c740> = None, pathGlobFilter: typing.Optional[typing.Union[bool, str]] = None, recursiveFileLookup: typing.Optional[typing.Union[bool, str]] = None, modifiedBefore: typing.Optional[typing.Union[bool, str]] = None, modifiedAfter: typing.Optional[typing.Union[bool, str]] = None, schema: typing.Optional[typing.Union[great_expectations.datasource.fluent.serializable_types.pyspark.SerializableStructType, str]] = None, sep: typing.Optional[str] = None, encoding: typing.Optional[str] = None, quote: typing.Optional[str] = None, escape: typing.Optional[str] = None, comment: typing.Optional[str] = None, header: typing.Optional[typing.Union[bool, str]] = None, inferSchema: typing.Optional[typing.Union[bool, str]] = None, ignoreLeadingWhiteSpace: typing.Optional[typing.Union[bool, str]] = None, ignoreTrailingWhiteSpace: typing.Optional[typing.Union[bool, str]] = None, nullValue: typing.Optional[str] = None, nanValue: typing.Optional[str] = None, positiveInf: typing.Optional[str] = None, negativeInf: typing.Optional[str] = None, dateFormat: typing.Optional[str] = None, timestampFormat: typing.Optional[str] = None, maxColumns: typing.Optional[typing.Union[int, str]] = None, maxCharsPerColumn: typing.Optional[typing.Union[int, str]] = None, maxMalformedLogPerPartition: typing.Optional[typing.Union[int, str]] = None, mode: typing.Optional[typing.Literal['PERMISSIVE', 'DROPMALFORMED', 'FAILFAST']] = None, columnNameOfCorruptRecord: typing.Optional[str] = None, multiLine: typing.Optional[typing.Union[bool, str]] = None, charToEscapeQuoteEscaping: typing.Optional[str] = None, samplingRatio: typing.Optional[typing.Union[float, str]] = None, enforceSchema: typing.Optional[typing.Union[bool, str]] = None, emptyValue: typing.Optional[str] = None, locale: typing.Optional[str] = None, lineSep: typing.Optional[str] = None, unescapedQuoteHandling: typing.Optional[typing.Literal['STOP_AT_CLOSING_QUOTE', 'BACK_TO_DELIMITER', 'STOP_AT_DELIMITER', 'SKIP_VALUE', 'RAISE_ERROR']] = None) pydantic.BaseModel #
add_delta_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7f670c234230> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7f670c2342f0> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7f670c234440> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7f670c2345f0> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7f670c2346b0> = None, timestampAsOf: typing.Optional[str] = None, versionAsOf: typing.Optional[str] = None) pydantic.BaseModel #
add_directory_csv_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7f670c41e9c0> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7f670c41ea80> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7f670c41ebd0> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7f670c41ed80> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7f670c41ee40> = None, pathGlobFilter: typing.Optional[typing.Union[bool, str]] = None, recursiveFileLookup: typing.Optional[typing.Union[bool, str]] = None, modifiedBefore: typing.Optional[typing.Union[bool, str]] = None, modifiedAfter: typing.Optional[typing.Union[bool, str]] = None, schema: typing.Optional[typing.Union[great_expectations.datasource.fluent.serializable_types.pyspark.SerializableStructType, str]] = None, sep: typing.Optional[str] = None, encoding: typing.Optional[str] = None, quote: typing.Optional[str] = None, escape: typing.Optional[str] = None, comment: typing.Optional[str] = None, header: typing.Optional[typing.Union[bool, str]] = None, inferSchema: typing.Optional[typing.Union[bool, str]] = None, ignoreLeadingWhiteSpace: typing.Optional[typing.Union[bool, str]] = None, ignoreTrailingWhiteSpace: typing.Optional[typing.Union[bool, str]] = None, nullValue: typing.Optional[str] = None, nanValue: typing.Optional[str] = None, positiveInf: typing.Optional[str] = None, negativeInf: typing.Optional[str] = None, dateFormat: typing.Optional[str] = None, timestampFormat: typing.Optional[str] = None, maxColumns: typing.Optional[typing.Union[int, str]] = None, maxCharsPerColumn: typing.Optional[typing.Union[int, str]] = None, maxMalformedLogPerPartition: typing.Optional[typing.Union[int, str]] = None, mode: typing.Optional[typing.Literal['PERMISSIVE', 'DROPMALFORMED', 'FAILFAST']] = None, columnNameOfCorruptRecord: typing.Optional[str] = None, multiLine: typing.Optional[typing.Union[bool, str]] = None, charToEscapeQuoteEscaping: typing.Optional[str] = None, samplingRatio: typing.Optional[typing.Union[float, str]] = None, enforceSchema: typing.Optional[typing.Union[bool, str]] = None, emptyValue: typing.Optional[str] = None, locale: typing.Optional[str] = None, lineSep: typing.Optional[str] = None, unescapedQuoteHandling: typing.Optional[typing.Literal['STOP_AT_CLOSING_QUOTE', 'BACK_TO_DELIMITER', 'STOP_AT_DELIMITER', 'SKIP_VALUE', 'RAISE_ERROR']] = None, data_directory: pathlib.Path) pydantic.BaseModel #
add_directory_delta_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7f670c2354c0> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7f670c235580> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7f670c2356d0> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7f670c235880> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7f670c235940> = None, timestampAsOf: typing.Optional[str] = None, versionAsOf: typing.Optional[str] = None, data_directory: pathlib.Path) pydantic.BaseModel #
add_directory_json_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7f670c24f3b0> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7f670c24f470> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7f670c24f5c0> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7f670c24f770> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7f670c24f830> = None, pathGlobFilter: typing.Optional[typing.Union[bool, str]] = None, recursiveFileLookup: typing.Optional[typing.Union[bool, str]] = None, modifiedBefore: typing.Optional[typing.Union[bool, str]] = None, modifiedAfter: typing.Optional[typing.Union[bool, str]] = None, schema: typing.Optional[typing.Union[great_expectations.datasource.fluent.serializable_types.pyspark.SerializableStructType, str]] = None, primitivesAsString: typing.Optional[typing.Union[bool, str]] = None, prefersDecimal: typing.Optional[typing.Union[bool, str]] = None, allowComments: typing.Optional[typing.Union[bool, str]] = None, allowUnquotedFieldNames: typing.Optional[typing.Union[bool, str]] = None, allowSingleQuotes: typing.Optional[typing.Union[bool, str]] = None, allowNumericLeadingZero: typing.Optional[typing.Union[bool, str]] = None, allowBackslashEscapingAnyCharacter: typing.Optional[typing.Union[bool, str]] = None, mode: typing.Optional[typing.Literal['PERMISSIVE', 'DROPMALFORMED', 'FAILFAST']] = None, columnNameOfCorruptRecord: typing.Optional[str] = None, dateFormat: typing.Optional[str] = None, timestampFormat: typing.Optional[str] = None, multiLine: typing.Optional[typing.Union[bool, str]] = None, allowUnquotedControlChars: typing.Optional[typing.Union[bool, str]] = None, lineSep: typing.Optional[str] = None, samplingRatio: typing.Optional[typing.Union[float, str]] = None, dropFieldIfAllNull: typing.Optional[typing.Union[bool, str]] = None, encoding: typing.Optional[str] = None, locale: typing.Optional[str] = None, allowNonNumericNumbers: typing.Optional[typing.Union[bool, str]] = None, data_directory: pathlib.Path) pydantic.BaseModel #
add_directory_orc_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7f670c282780> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7f670c282840> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7f670c282450> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7f670c282720> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7f670c2827b0> = None, pathGlobFilter: typing.Optional[typing.Union[bool, str]] = None, recursiveFileLookup: typing.Optional[typing.Union[bool, str]] = None, modifiedBefore: typing.Optional[typing.Union[bool, str]] = None, modifiedAfter: typing.Optional[typing.Union[bool, str]] = None, mergeSchema: typing.Optional[typing.Union[bool, str]] = False, data_directory: pathlib.Path) pydantic.BaseModel #
add_directory_parquet_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7f670c283530> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7f670c283620> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7f670c2835f0> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7f670c283560> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7f670c283050> = None, pathGlobFilter: typing.Optional[typing.Union[bool, str]] = None, recursiveFileLookup: typing.Optional[typing.Union[bool, str]] = None, modifiedBefore: typing.Optional[typing.Union[bool, str]] = None, modifiedAfter: typing.Optional[typing.Union[bool, str]] = None, mergeSchema: typing.Optional[typing.Union[bool, str]] = None, datetimeRebaseMode: typing.Optional[typing.Literal['EXCEPTION', 'CORRECTED', 'LEGACY']] = None, int96RebaseMode: typing.Optional[typing.Literal['EXCEPTION', 'CORRECTED', 'LEGACY']] = None, data_directory: pathlib.Path) pydantic.BaseModel #
add_directory_text_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7f670c2a0440> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7f670c2a04a0> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7f670c2a0380> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7f670c2a0170> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7f670c2a0470> = None, pathGlobFilter: typing.Optional[typing.Union[bool, str]] = None, recursiveFileLookup: typing.Optional[typing.Union[bool, str]] = None, modifiedBefore: typing.Optional[typing.Union[bool, str]] = None, modifiedAfter: typing.Optional[typing.Union[bool, str]] = None, wholetext: bool = False, lineSep: typing.Optional[str] = None, data_directory: pathlib.Path) pydantic.BaseModel #
add_json_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7f670c24cc50> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7f670c24cf20> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7f670c24d070> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7f670c24d220> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7f670c24d2e0> = None, pathGlobFilter: typing.Optional[typing.Union[bool, str]] = None, recursiveFileLookup: typing.Optional[typing.Union[bool, str]] = None, modifiedBefore: typing.Optional[typing.Union[bool, str]] = None, modifiedAfter: typing.Optional[typing.Union[bool, str]] = None, schema: typing.Optional[typing.Union[great_expectations.datasource.fluent.serializable_types.pyspark.SerializableStructType, str]] = None, primitivesAsString: typing.Optional[typing.Union[bool, str]] = None, prefersDecimal: typing.Optional[typing.Union[bool, str]] = None, allowComments: typing.Optional[typing.Union[bool, str]] = None, allowUnquotedFieldNames: typing.Optional[typing.Union[bool, str]] = None, allowSingleQuotes: typing.Optional[typing.Union[bool, str]] = None, allowNumericLeadingZero: typing.Optional[typing.Union[bool, str]] = None, allowBackslashEscapingAnyCharacter: typing.Optional[typing.Union[bool, str]] = None, mode: typing.Optional[typing.Literal['PERMISSIVE', 'DROPMALFORMED', 'FAILFAST']] = None, columnNameOfCorruptRecord: typing.Optional[str] = None, dateFormat: typing.Optional[str] = None, timestampFormat: typing.Optional[str] = None, multiLine: typing.Optional[typing.Union[bool, str]] = None, allowUnquotedControlChars: typing.Optional[typing.Union[bool, str]] = None, lineSep: typing.Optional[str] = None, samplingRatio: typing.Optional[typing.Union[float, str]] = None, dropFieldIfAllNull: typing.Optional[typing.Union[bool, str]] = None, encoding: typing.Optional[str] = None, locale: typing.Optional[str] = None, allowNonNumericNumbers: typing.Optional[typing.Union[bool, str]] = None) pydantic.BaseModel #
add_orc_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7f670c281700> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7f670c2817c0> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7f670c281910> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7f670c281ac0> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7f670c281b80> = None, pathGlobFilter: typing.Optional[typing.Union[bool, str]] = None, recursiveFileLookup: typing.Optional[typing.Union[bool, str]] = None, modifiedBefore: typing.Optional[typing.Union[bool, str]] = None, modifiedAfter: typing.Optional[typing.Union[bool, str]] = None, mergeSchema: typing.Optional[typing.Union[bool, str]] = False) pydantic.BaseModel #
add_parquet_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7f670c282fc0> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7f670c2831d0> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7f670c2831a0> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7f670c283110> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7f670c282ed0> = None, pathGlobFilter: typing.Optional[typing.Union[bool, str]] = None, recursiveFileLookup: typing.Optional[typing.Union[bool, str]] = None, modifiedBefore: typing.Optional[typing.Union[bool, str]] = None, modifiedAfter: typing.Optional[typing.Union[bool, str]] = None, mergeSchema: typing.Optional[typing.Union[bool, str]] = None, datetimeRebaseMode: typing.Optional[typing.Literal['EXCEPTION', 'CORRECTED', 'LEGACY']] = None, int96RebaseMode: typing.Optional[typing.Literal['EXCEPTION', 'CORRECTED', 'LEGACY']] = None) pydantic.BaseModel #
add_text_asset(name: str, *, id: <pydantic.v1.fields.DeferredType object at 0x7f670c283e60> = None, order_by: <pydantic.v1.fields.DeferredType object at 0x7f670c283ec0> = None, batch_metadata: <pydantic.v1.fields.DeferredType object at 0x7f670c283da0> = None, batch_definitions: <pydantic.v1.fields.DeferredType object at 0x7f670c283cb0> = None, connect_options: <pydantic.v1.fields.DeferredType object at 0x7f670c283e90> = None, pathGlobFilter: typing.Optional[typing.Union[bool, str]] = None, recursiveFileLookup: typing.Optional[typing.Union[bool, str]] = None, modifiedBefore: typing.Optional[typing.Union[bool, str]] = None, modifiedAfter: typing.Optional[typing.Union[bool, str]] = None, wholetext: bool = False, lineSep: typing.Optional[str] = None) pydantic.BaseModel #
- delete_asset(name: str)None #
Removes the DataAsset referred to by asset_name from internal list of available DataAsset objects.
- Parameters
name – name of DataAsset to be deleted.
- get_asset(name: str)great_expectations.datasource.fluent.interfaces._DataAssetT #
Returns the DataAsset referred to by asset_name
- Parameters
name – name of DataAsset sought.
- Returns
_DataAssetT – if named “DataAsset” object exists; otherwise, exception is raised.